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Talk Organization

• Decision Layer summary and capabilities
• DL system architecture (as provided by CLEaR)
• Examples of DL domain models
• Code status and documentation
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Decision Layer Summary and 
Capabilities
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Decision Layer Summary

• Provides intelligent decision-making capabilities
• Designed to contain and enable integration of:

– planning/scheduling techniques
– executive techniques
– other high-level autonomy techniques (e.g. data analysis)

• Also intended to provide flexible interface to CLARAty
Functional Layer

• Current DL instantiation provided by CLEaR Framework
– CLEaR: Closed Loop Execution and Recovery
– Integrates CASPER dynamic planning system (JPL) with TDL 

executive (CMU)
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Decision Layer Capabilities

• Autonomous rover-command generation to achieve high-
level science and engineering goals
– Given:

• Initial state: Rover at position (x,y) w/ certain resource levels
• Desired state (i.e., list of goals): Achieve science activities A, B and C

– Produce:
• Plan (i.e., list of commands) to make desired state true
• E.g., navigate to loc A, raise mast, take image, lower mast, navigate to loc B, 

etc.
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Decision Layer Capabilities, cont.

• Reasoning about state, resource and temporal constraints
• Use of both declarative and procedural domain information

– Activity X uses “20 Watts of Power” and requires “Camera to be on”
– Activity A must be scheduled before Activity B within allowable range 

[10 sec, 30 sec]
– Activity Z breaks down into sub-activities Z1, Z2 & Z3
– If condition P holds then perform activity Q

• Timelines represent plan’s effects over time
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RESOURCE
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Decision Layer Capabilities, cont.

• Command execution and monitoring
– Dispatch commands to FL and monitor relevant state and resource 

information

• Exception handling
– Handle exceptions or failures
– E.g., must retry rock grasp due to initial failure
– E.g., motor overheats so disable arm

• Re-planning in light of changing context or goals
– Modify global plan when conditions change
– E.g., discard science target or traverse due to unexpected low power 

reserves
– E.g., add science target due to unexpected opportunity
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Current Decision Layer Instantiation



9

CLEaR System
• CLEaR integrates two software components:

– CASPER planning and scheduling system
• Organized around activities
• Reasons about resource, state and temporal constraints
• Conflict detection 
• Global knowledge of plan and state/resource timelines
• Provides:

– Initial plan generation
– Dynamic re-planning when state or goals changes
– Declarative constructs for model information (e.g., activity pre-conditions and effects)

– TDL executive
• Organized around tasks and task trees
• Reasons about task expansion based on current state
• Event-driven decision-making
• Provides:

– Task decomposition and synchronization
– Task execution and monitoring
– Exception handling
– Procedural constructs for model information (e.g., conditionals, iterative behavior)

• CLEaR task examining how planning and executive capabilities can be 
closely integrated to provide a more robust and responsive system
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Example ASPEN Plan
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Sample TDL Task Tree
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CLEaR High-level View
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ASPEN/CASPER System Architecture
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TDL System Architecture
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Decision Layer Examples 
and 

Model Information
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ASPEN Model Organization

• Model Files
– Activities.mdl
– State-variables.mdl
– Resources.mdl 

• Init Files
– Init-state.ini
– Requests.ini (goals)

• Functions/code
– Functions.cc (parameter functions)
– Heuristic-functions.cc
– User-search-functions.cc
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Sample ASPEN Activity Definition
Activity go_to_location { 

position fromx, fromy, fromz, x, y, z; 
angle fromheading, heading; 
distance dist;  // est. traverse distance
real speed = 1.655; // meters per min
real goto_power = 330.0; // Watts
int goto_energy; // Watt-hours 
…

timeline_dependencies =  
<fromx, fromy, fromz, fromheading> <- rover_orientation_sv; 

dependencies = 
dist <- path_distance(fromx, fromy, x, y, pathplanner), 
duration <- traverse_time(dist, speed, duration, …),
goto_energy <- calculate_rover_energy(goto_power, duration); 

reservations = 
day_night_sv must_be "day", 
rover_energy_sv use goto_energy, 
health_sv must_be "nominal", 
rover_orientation_sv change_to <x,y,z,heading> at_end; 

}; 
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Sample ASPEN Resource & State Defs

Resource shovel { type = atomic; }; 

Resource spectrometer { type = atomic; 
}; 

Resource battery { 

type = depletable; 

capacity = 69;  // watts 

min_value = 0; 

}; 

State_variable rover_orientation_sv { 

// x, y, z, heading 

states = <real, real, real, real>; 

default_state = <0.0, 0.0, 0.0, 0.0>; 

} 

State_variable mast_sv { 

states = ("stowed", "deployed"); 

default_state = "stowed"; 

}; 
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Sample TDL Task Tree
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TDL Model Organization

• Model information contained primarily in *.tdl files
• Procedures in files similar to C++ functions

– TDL based on top of C++ programming language
– TDL modeling language provides extra constructs for task 

management (e.g., synchronization, monitoring, etc.)
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Sample TDL Task Definition
GOAL stepToLocation(TaskData *taskData, double destPosTol, int time_bound) 
{ 

float targetX, targetY, targetZ, targetHeading, priority; 
…
if( (tdlVars[TIME].getCurrentValue() < time_bound) &&

(!tdlVars[TASK_TEMPORAL_FAILURE].getCurrentValue() ) ) 
{ 
Spawn turnInPlace(taskData,time_bound) With Wait;
if(!commandMap[(int)(tdlVars[CUR_TRAVERSE_TID].getCurrentValue())]. isSucceeded()) 

{
cout<<"stepToLocation::turnInPlace returned without completion. NOT proceeding with goto\n"<<flush; 
…

} 
} 

if( (tdlVars[TIME].getCurrentValue() < time_bound) &&
(!tdlVars[TASK_TEMPORAL_FAILURE].getCurrentValue() ) ) 

{
tid = sendNavToCommand(targetX, targetY, targetZ, targetHeading, destPosTol, position_update_frequency); 
Spawn stepCompletion(taskData, tid, time_bound) With Wait; 
if(!commandMap[tid].isComplete()) 

{ 
Spawn abortCurrentGoTo(taskData) With Wait; //send an all-stop
commandMap[tid].complete(FAILED); 
return; 
} 

…
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Sample TDL Monitor Definition

MONITOR stepCompletion(TaskData *taskData, int tid, int time_bound) 
serial, period 0:0:2.0, maximum trigger 1 
{ 

if(commandMap[tid].isComplete()) 
{
cout<<"stepCompletion: TRIGGER (task compl)\n"<<flush; 
TRIGGER(); 

} 
if(tdlVars[TASK_TEMPORAL_FAILURE].getCurrentValue()) 
{
cout<<"stepCompletion: TRIGGER (temporal failure)\n"<<flush; 
TRIGGER(); 

} 
if(tdlVars[TIME].getCurrentValue() >= time_bound) 
{
cout<<"stepCompletion: TRIGGER (time bound = …\n”<<,flush;

TRIGGER(); 
} 

…
}
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Decision Layer Code Status and 
Documentation
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Status of Code
• System requirements

– Currently developed using Sparcworks compiler, Solaris 2.6 & 2.8
– Have created working binary for Solaris 2.7 (telerobotics sparcs)
– Currently porting code to g++ under Linux (TDL already in Linux)

• CLARAty Repository
– Have not checked in yet
– Holding on paperwork and porting code

• Model information
– Have ASPEN and TDL models based on FY01 scenario

• Work for both R7 & R8 with small parameter changes
• Currently maintain two separate models for ASPEN & TDL

– Model(s) primarily reason about traverses, comm and science activities, and power 
and memory resources 

– DL designed to receives updates from FL for:
• Position, memory & energy 
• Currently extending to receive map updates

– Model(s) will need to be extended for additional scenarios and/or as new rover 
components are added or tested (e.g., arm, mast, comm)

• System source code may require extensions as well (e.g., optimization)
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Documentation

• Some documentation exists on CLARAty DL web page
– http://claraty/Development/DL%20Documentation/index.html
– Will be extending this to have step-by-step instructions for running FY01 

(and future) scenarios in simulation and on rovers

• ASPEN/CASPER documentation
– http://www-aig.jpl.nasa.gov/public/planning/aspen/
– http://www-aig.jpl.nasa.gov/public/planning/casper/
– ASPEN User’s Manual can be found at:

• http://www-aig.jpl.nasa.gov/public/planning/aspen/usersguide.pdf

• TDL documentation
– http://www-2.cs.cmu.edu/~tdl/
– TDL Quick Reference Manual can be found at:

• http://www-2.cs.cmu.edu/~tdl/tdl.html


